臭氧是一种强氧化剂,灭菌过程属生物化学氧化反应。其原理如下:
1、臭氧能氧化分解细菌内部葡萄糖所需的酶,使细菌灭活死亡。
2、直接与细菌、病毒作用,破坏它们的细胞器和DNA、RNA,使细菌的新陈代谢受到破坏,导致细菌死亡。
3、透过细胞膜组织,侵入细胞内,作用于外膜的脂蛋白和内部的脂多糖,使细菌发生通透性畸变而溶解死亡。
电风扇的主要部件是:交流电动机。其工作原理是:通电线圈在磁场中受力而转动。能量的转化形式是:电能主要转化为机械能,同时由于线圈有电阻,所以不可避免的有一部分电能要转化为热能。
电风扇工作时(假设房间与外界没有热传递)室内的温度不仅没有降低,反而会升高。温度升高的原因:电风扇工作时,由于有电流通过电风扇的线圈,导线是有电阻的,所以会不可避免的产生热量向外放热,故温度会升高。
因为人体的体表有大量的汗液,当电风扇工作起来以后,室内的空气会流动起来,所以就能够促进汗液的急速蒸发,结合“蒸发需要吸收电风扇大量的热量”,故人们会感觉到凉爽。
即产生了电势差。这个电势差也被叫做霍尔电势差,空穴受到洛伦兹力qv*b;d,空穴漂移速度为vx,如同附加一个横向电流,ix是x方向的电流,bz是z方向的磁场,当沿ox方向加电场ex时。
现在阐述霍尔效应的原理,方向沿-y方向。此时将会产生y方向的电压:
以p型半导体为例,电流密度为jx=pqvx,大小为qvxbz,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,其中rh是霍尔常数。空穴在洛伦兹力的作用下向-y方向偏转,d是材料的厚度,因而在样品两端引起电荷积累,这一现象便是霍尔效应,与材料的性质种类有关当电流垂直于外磁场通过导体时。
霍尔电压vh=rh*ix*bz/,在垂直磁场bz的作用下
由成熟的孢子萌发而成。
孢子是生物所产生的一种有繁殖或休眠作用的细胞,能直接发育成新个体。
菌子,是对一些蕈菌类的别称,蕈菌包括蘑菇和菌子,但蘑菇和菌子只是蕈菌类的小部分。菌子是由菌丝体和子实体两部分组成,菌丝体是营养器官,子实体是繁殖器官。由成熟的孢子萌发成菌丝。
在气象学中,旋风是热带气旋的一种,它围绕着一个低大气压的强中心旋转。气旋的特点是向内旋转的气流,绕着一个低压区旋转。最大的低压系统是极地涡旋和最大尺度的温带气旋。
在日常生活中,我们感到周围的空气经常处于一种忽上忽下、忽左忽右、忽快忽慢的运动变化之中,这说明空气有不规则运动的特点。这种运动气象学称为乱流,又称湍流、扰动气流。
产生液压冲击的原因有很多,以下是最常见的两种:
1、阀门的猛然开闭所导致的液压冲击,由于液压油的惯性和油液的可压缩特性,会使得液压油的动能快速转为压力能,这种剧烈变化会产生压力波,这种现象被称为“水击”,不过由于液压油的粘性,这种现象会短时间停止。
2、液压泵站的突然启动或突然停止带来的液压冲击,因为设备和液压油都有惯性,所以这种情况产生的液压冲击也非常大。
火花产生是基于电火花腐蚀原理,即在工具电极与零件互相靠近时,极间电压将在正、负极间使电介质电离而形成火花放电,并在火花通道中瞬时产生大量热能,足以使金属局部熔化甚至汽化,而将金属腐蚀掉,从而形成所要求的型孔和盲孔。
当脉电压加到电极上时,便在当时条件下相对某一间隙最小处,或绝缘强度最低处击穿工作液,并产生火花放电,瞬间产生高温,温度高达104℃以上,使得零件上被蚀掉一小点金属,形成一个小凹坑。
被摄物体的图像经过镜头聚焦至ccd芯片上,ccd根据光的强弱积累相应比例的电荷,各个像素积累的 电荷在视频时序的控制下,逐点外移,经滤波、放大处理后,形成视频信号输出。视频信号连接到监视器或电视机的视频输入端便可以看到与原始图像相同的视频图像。
扩展资料
完成图像分解和光电信号转换的器件。图像分解是把一幅完整图像分解成若干独立的像素(构成电视图像画面的最小单元)的过程。一般说,像素的数目愈多,图像愈清晰。每个像素只用单一的颜色和亮度表示。摄像器件能把图像中各像素的光信号转变成相应的电信号,再按一定的顺序传送到输出端。
摄像管、电子束器件,又分为析像管、光电倍增析像管、超正析像管和光导摄像管等几种。新型摄像机中多使用小巧的氧化铅光电摄像管。各种摄像管都有一个真空玻壳,里面装有靶面和电子枪。
被摄景物透过玻壳上的窗成像于靶面,利用靶面的光电发射效应或光电导效应将靶面各点的照度分布转化为相应的电位分布,将光图像变成电图像。在管外偏转线圈驱动下,电子束逐点逐行扫描靶面,把扫描路径上各像素的电位信号按序输出。
固体摄像器件,一种新型的电荷耦合器件 (CCD)。几十万个器件单元排列成阵面,表层具有光敏特性。被摄景物成像于阵面,各单元存储电荷量和照度成正比。利用时钟脉冲和移位控制信号,将阵面各单元信号按一定顺序移出,即可得到强度随时间变化的图像电信号。
风的形成乃是空气流动的结果。风能利用形成主要是将大气运动时所具有的动能转化为其他形式的能。空气在水平方向上的流动就叫做风。风是由于空气受热或受冷而导致的从一个地方向另一个地方产生移动的结果。
太阳照射着地表的不同区域,空气受阳光的照射后,就造成了有的地方空气热,有的地方空气冷。
热空气比较轻,容易向高处飞扬,就上升到了周围的冷空气之上;而冷空气比较重,会向较轻空气的地方流动,于是空气就发生了流动现象,这样就产生了风。
原理:
从液相中产生一个可分离的固相的过程,或是从过饱和溶液中析出的难溶物质。沉淀作用表示一个新的凝结相的形成过程,或由于加入沉淀剂使某些离子成为难溶化合物而沉积的过程。产生沉淀的化学反应称为沉淀反应。物质的沉淀和溶解是一个平衡过程,通常用溶度积常数Ksp来判断难溶盐是沉淀还是溶解。溶度积常数是指在一定温度下,在难溶电解质的饱和溶液中,组成沉淀的各离子浓度的乘积为一常数。分析化学中经常利用这一关系,借加入同离子而使沉淀溶解度降低,使残留在溶液中的被测组分小到可以忽略的程度。
沉淀是发生化学反应时生成了不溶于反应物所在溶液的物质。
制取:
实验证明,沉淀类型和颗粒大小,既取决于物质的本性,又取决于沉淀的条件。在实际工作中,须根据不同的沉淀类型选择不同的沉淀条件,以获得合乎要求的沉淀。对晶形沉淀,要在热的稀溶液中,在搅拌下慢慢加入稀沉淀剂进行沉淀。沉淀以后,将沉淀与母液一起放置,使其“陈化”,以使不完整的晶粒转化变得较完整,小晶粒转化为大晶粒。而对非晶形沉淀,则在热的浓溶液中进行沉淀,同时加入大量电解质以加速沉淀微粒凝聚,防止形成胶体溶液。沉淀完毕,立即过滤,不必陈化。
类型:
按照水中悬浮颗粒的浓度、性质及其絮凝性能的不同,沉淀可分为以下几种类型。
1.自由沉淀。悬浮颗粒的浓度低,在沉淀过程中呈离散状态,互不粘合,不改变颗粒的形状、尺寸及密度,各自完成独立的沉淀过程。这种类型多表现在沉砂池、初沉池初期。
2.絮凝沉淀。悬浮颗粒的浓度比较高(50~500mg/L),在沉淀过程中能发生凝聚或絮凝作用,使悬浮颗粒互相碰撞凝结,颗粒质量逐渐增加,沉降速度逐渐加快。经过混凝处理的水中颗粒的沉淀、初沉池后期、生物膜法二沉池、活性污泥法二沉池初期等均属絮凝沉淀。
3.拥挤沉淀。悬浮颗粒的浓度很高(大于500mg/L),在沉降过程中,产生颗粒互相干扰的现象,在清水与浑水之间形成明显的交界面(混液面),并逐渐向下移动,因此又称成层沉淀。活性污泥法二沉池的后期、浓缩池上部等均属这种沉淀类型。
4.压缩沉淀。悬浮颗粒浓度特高(以至于不再称水中颗粒物浓度,而称固体中的含水率),在沉降过程中,颗粒相互接触,靠重力压缩下层颗粒,使下层颗粒间隙中的液体被挤出界面上流,固体颗粒群被浓缩。活性污泥法二沉池污泥斗中、浓缩池中污泥的浓缩过程属此类型。
作用:
在经典的定性分析中,几乎一半以上的检出反应是沉淀反应。在定量分析中,它是重量法和沉淀滴定法的基础。沉淀反应也是常用的分离方法,既可将欲测组分分离出来,也可将其它共存的干扰组分沉淀除去。